Водоросли в микрокаплях в 3 раза увеличивают эффективность искусственного фотосинтеза - «Технологии»
✔ Технологии стоят у истоков любого изобретения. Благодаря им появляются новые устройства и материалы. В этом разделе вы найдете информацию о самых интересных технологиях современного хайтек мира. |
Воссоздание процесса фотосинтеза, при котором растения естественным образом преобразуют солнечный свет, воду и углекислый газ в химическую энергию для своей жизнедеятельности, является ключевой задачей исследований в области возобновляемых источников энергии. Новая работа ученых Сингапурского технологического университета Наньян (NTU) продемонстрировала, как заключение водорослей в крошечные капли может в 3 раза повысить их способность собирать энергию, что стало еще одним шагом на пути к коммерческой реализации технологии.
Основной проблемой, с которыми сталкиваются ученые в ходе работы в этом направлении, является относительно низкая эффективность разработанных решений. В то время как солнечные панели обычно преобразуют свет в энергию с эффективностью около 20 процентов, современные технологии искусственного фотосинтеза достигают эффективности в 4-5%.
«Искусственный фотосинтез не так эффективен, как солнечные элементы для выработки электроэнергии», - говорит руководитель исследования доцент Чен Ю-Ченг. - Однако он более возобновляемый и устойчивый. Из-за растущего интереса к экологически чистым технологиям извлечение энергии из светособирающих белков водорослей вызывает значительный интерес в области биоэнергетики».
Белки, лежащие в основе исследований Ченга, известны как фикобилипротеины. Они отвечают за поглощение света клетками водорослей и работают длинах волн всего спектра. Чтобы улучшить способность превращать захваченный свет в энергию, ученые предложили инновационный метод – заключить красные водоросли в крошечные жидкие кристаллические капли размером всего от 20 до 40 микрон.
Когда свет попадает на каплю, его изогнутые края вызывают «эффект шепчущей галереи», при котором свет распространяется по периметру и дольше задерживается внутри капли. Большее количество света, задерживаемого внутри на более длительный срок, означает большую возможность для фотосинтеза. Затем генерируемые электроны могут быть захвачены с помощью электродов.
«Капля ведет себя как резонатор, ограничивающий в себе больше света, - объясняет Чен. - Это дает водорослям возможность увеличить производительность фотосинтеза. Аналогичный результат может быть получен, если покрыть каплю белком водорослей с внешней стороны. Используя микрокапли в качестве носителя светособирающих биоматериалов, значительное усиление локального электрического поля и удержание фотонов внутри капли привело к существенному увеличению выработки электроэнергии».
По словам Чена, решение с каплями увеличивает выработку энергии в 2-3 раза по сравнению с необработанным протеином из водорослей. Сейчас команда ученых работает над технологией, которая обеспечит возможность промышленного производства энергии. Предполагается, что новый метод позволит использовать растущие в водоемах водоросли, которые, в свою очередь, могут действовать как плавающие генераторы энергии.
Источник: ntu.edu.sg